生命科学公司正面临结构化和非结构化数据源的爆炸。来自连接的移动设备和以患者为中心的应用程序的患者级数据的复杂性和数量正在增加。
临床团队知道,可以从这些数据中解锁巨大的价值 - 以跟踪针对目标的试验性能,仔细检查现场是否有风险,通过研究真实世界证据以及许多其他用例来确定化合物的新指示。然而,大多数组织都在努力摄取和处理此数据进行调查,这有很多原因。
R&D organizations have made major investments in information technology but find it increasingly difficult to derive value from the accelerating amount of available data. This patchwork of risk-based monitoring, site management, and clinical research associate systems performs a narrow set of tasks and has a limited ability to exchange data. Even today stakeholders exchange data manually by switching between standalone apps (e.g., from EDC to a CTMS) or copying MS Excel files. These approaches are both time-consuming and prone to errors.
生命科学公司需要一种解决方案来整体摄入和管理数据,并授权用户执行启用机器学习的分析。这样的解决方案应敏捷并适应分散的试验和其他新模型。数据的大量和速度表明需要机器学习自动化某些数据处理和增强分析。同样重要的是能够连接历史上难以连接的异质数据和系统的能力。
评估企业级临床数据和分析解决方案的客户应在其标准中包括这些功能:
- Collect and clean data from heterogeneous sources including clinical and business applications, mobile apps, eTMF files, and more.
- 提供一个中央存储库,该存储库可容纳结构化和非结构化数据集。
- Enable stakeholders across the organization to perform advanced analytics (includingAI和机器学习)在一个生态系统中。
- 拥抱开放的API和算法库模型,以注入对工作流程的洞察力并最大化重复使用。betway必威怎么提款
- 提供一个模块化平台,具有灵活性,可以用特定的组件来补充现有的研发环境,而不是一个尺寸的整个解决方案。
IQVIA在使用临床数据方面的可靠记录来自进行许多临床试验作为合同研究组织(CRO) - 围绕赞助商的特定要求集成数据,分析和技术,以提出正确的问题并支持更智能的决策。
IQVIA has a new cloud platform that combines data from different point solutions, enabling exploration of all data. The临床数据分析套件collects multiple sources of data for review and analysis, uses AI/ML and other techniques to create intelligent insights, and delivers those insights to appropriate workflows. These next best actions and other recommendations improve stakeholder collaboration between patients, sites, and sponsors.