机器学习对生命科学行业有利吗?
人工智能(AI)和机器学习(ML)是生命科学行业中迅速发展的学科。仅在2022年(全球),AI在医疗保健中的申必威手机APP请预计将增长至80亿美元。几乎一半的全球生命科学专业人员要么在其工作的某些方面使用或有兴趣使用AI。
医疗保健必威手机APP行业本质上具有竞争力和动态。AI工具对该行业具有很高的吸引力,因为它们在临床研究,试验管理,监管和市场获取以及商业效力应用方面取得了成功。那些需要获得更深层次的市场见解的人已经采用了AI/MLbetway必威怎么提款。AI/ML集成到医疗保健公司的分析策略中,取代了直必威手机APP觉和基于规则的决策。它提供了基于证据的见解,可以揭示复杂的模式,例如在患者betway必威怎么提款行为,健康结果,HCP处方和销售中发现的洞察力,这些模式以前未被发现。必威手机APP
AI/ML的进步,加上医疗保健数据的可用性越来越多(例如,药房,保险公司,医疗保健专业人员(HCP),实验室,电子医疗记录(EM必威手机APPR),营销活动和社交媒体)提供了生命科学行业丰富的见解和具有推动betway必威怎么提款医疗保健前进的能力的竞争优势的希望。必威手机APP
Is AI/ML just a new term for classical statistics?
Machine learning first appeared in computer science research in the 1950s. So why, after all these decades, is the life sciences industry finally interested in this family of analytics? The simple answer has to do with data storage and data processing capacities. Both have grown tremendously since that time, to the point where it is now affordable for businesses to use machine learning. Consider that, for a fraction of the cost, a smartphone now has more storage and computing power than a mainframe in the 80s.
机器学习从许多研究领域中汲取灵感:人工智能,数据挖掘,统计和优化。数据(文本)采矿使用数据存储和数据操纵技术来准备数据以进行分析。必威官方在线然后,作为数据挖掘任务的一部分,统计或machine learning algorithms can detect patterns in the data and make predictions about new data。
When comparing machine learning to classical statistics, we often look to the assumptions about the data required for the analyses to function reliably. Classical statistical methods typically require the data to have certain characteristics and often use only a few features (called covariates or predictors) to produce results, while machine learning models might use hundreds or even thousands of parameters in a computer-based method to find similarities and patterns among data.
经典统计和机器学习之间的相似性和差异是一个主题,它产生了许多讨论论文和博客。这里有一些值得一提的关键点:
Classical statistics, a subfield of mathematics, almost always starts with a hypothesis, and generally assumes that some structural relationship exists in the data.它使用概率理论和基础分布,通常应用:
- 对于低维问题,潜在的协变量,预测因素,研究人群或样本量较小的人。
- When you need to know more about data and the properties of predictors to make accurate inferences about the population under study.
- 当您拥有更多结构化和完成数据集时。
- 当您想从人群中创建一个科学可靠的样本数据集以进行有效的推论并得出公正的结论。
在生命科学行业中,经典统计方法的使用是研发活动和同行评审的现实世界出版物的基础。该学科中的统计分析计划必须遵守预定义的行业标准。此类案例包括随机临床试验分析和患者分析,例如生存分析以比较多个组的持久度指标。
机器学习更具探索性,而不是依赖先验hypotheses or assumptions。算法通常比其统计对应物要复杂得多,并且通常需要在迭代培训过程开始之前做出设计决策。这是由于大量输入(高维数据集)以及包含非结构化数据(例如文本数据)引起的功能工程难度。
- Machine learning is mainly about creating predictive models, using supervised and unsupervised learning, for classification problems. It requires no prior assumptions about the underlying relationships between population variables and distributions.
尽管存在这些差异,但在许多情况下,经典统计和ML使用类似的方法,因此相互重叠。例如,逻辑回归是从统计领域借来的一种技术ML。它被广泛用于分类问题,例如分割和小组分配的预测。
这是对经典统计和机器学习之间差异的快速总结:
Classical Statistics |
机器学习 |
|
方法 |
数据生成(随机)过程 |
算法模型 |
司机 |
数学,概率理论 |
Fitting Data |
重点 |
假设测试,可解释性 |
预测精度(精度和回忆) |
数据大小 |
低级 |
大数据 |
Dimensions |
主要用于低维度 |
高维数据 |
推理 |
参数估计,预测,估计错误 |
模式识别 |
模型选择 |
Parameter Significance (p-values), Goodness of Fit |
数据分区的预测精度的交叉验证 |
Popular Tools |
R,SAS |
Python |
解释性 |
高的 |
医学 |
将AI/ML用于医疗保健行业的含义是什么?必威手机APP
For life sciences companies, understanding the pros and cons of both classical statistics and AI/ML is important when investing in your business. Several key industry-specific conditions can lead decision makers to adopt machine learning solutions. For example:
- 几个医疗保健数据集的高维质和生成强大预测模型所需的功能。必威手机APP
- 大型数据集(大数据)具有数百万条记录,这些记录既由结构化和非结构化数据制成。
- 稀有疾病人群数据产生不平衡的子组,需要复杂的数据工程步骤才能进行模型拟合。
- 需要基于正确部署的机器学习平台的动态算法,该平台可以利用频繁的数据刷新和市场变化,从而在保持相关性的同时随着时间的推移而提高模型的性能。
有效部署AI/ML技术可以改变商业策略,使决策者在市场上必威官方在线具有优势。However, it only works when organizations have a machine learning strategy with all the necessary elements:
- 访问各种行业数据集和主题专业知识。
- 使用医疗保健数据比人们想象必威手机APP的要复杂得多,部分原因是数据源的多样性和可变的完整性水平,需要数据插补和归一化的复杂数据工程步骤。
- 深厚的医疗必威手机APP保健行业和监管知识,包括数据隐私立法的知识。
- 高级AI/ML技术必威官方在线允许有效地提供概念和解决方案的证明
- 建立AI/ML算法的技术专长适合目的并产生有意义的见解。betway必威怎么提款数据科学家,最熟练的分析专业人员,需要计算机科学,数学统计和领域专业知识的独特融合。大多数数据科学家都接受了零售,金融服务和传播/社交媒体等行业的培训,使经验丰富的医疗保健数据科学家很难找到。必威手机APP
考虑到许多挑战,有奖励吗?
人工智能和机器学习可以提供以前无法访问的见解,这些见解可以积极影响商业活动并支持医疗保健组织中的各种功能。betway必威怎么提款必威手机APPAI/ML methods have been shown to consistently deliver more accurate outcomes in less time than conventional assessments.Deriving the greatest benefit from the investment entails adopting a long-term strategy and new ways of performing analytics, rather than looking for short-term gains.
策略包括:
- Start with smaller projects and scale up over time. You will be less overwhelmed working with Big Data.
- 定义明确的业务目标。AI/ML无法神奇地猜测您要做什么!
- 计划如何衡量成功。AI/ML会随着时间的推移积累知识。随着时间的流逝,要有耐心并为迭代过程做好准备,该过程将变得更好,并提供增量福利(ROI)。
- Success requires a change in culture around analytics within the organization. You will need to build trust towards AI/ML-driven predictive and prescriptive outcomes. The level of comfort in receiving action plans designed by a machine will vary from individual to individual.
- 最后,请记住,当正确设计和实施时,AI/ML驱动的见解工作!betway必威怎么提款不要害怕创新。该行业中的许多其他人已经在这样做。在IQVIA,我们在全球进行了数百个项目,可证明医疗保健公司的投资回报率很高。必威手机APP
结论
Classical statistics and machine learning need to co-exist; the use of one versus the other should be based on the analytical problem at hand. In some scenarios, they serve very different purposes. In others, they may overlap. The question is not whether one approach should be adopted at the expense of the other, but rather to determine which is the most appropriate for any given business situation.
Machine learning is moving into the mainstream. Effective use of machine learning in business entails developing an understanding of ML within the broader analytics environment, becoming familiar with proven applications, anticipating the challenges you may face using it in your organization, and learning from leaders in the field. Consider a holistic view of machine learning inside your organization. The volume and variety of data, combined with significant regulatory requirements in the healthcare industry, presents a challenge.However, if healthcare companies can successfully navigate this challenge, they face an unpreceded opportunity to answer complex questions about how to best demonstrate the value of their products, craft messaging, and execute sales strategies that deliver commercial success.
在此AI/ML系列的接下来的几个博客中,我们将展示成功的故事,其中已应用AI/ML来为临床和商业团队带来竞争优势。
如果您对此博客有疑问或评论,或者想讨论您的企业如何从使用传统统计数据转换为机器学习,请联系Pierre.St-Martin或者加拿大info@iqvia.com。